Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Tung Van Do, P.Eng.
VP, Hydro Engineering

Powel MiniMax Inc.
239 Menzies Street, suite 210
Victoria, BC, V8N 2G4
250-385-0206
www.powelminimax.com
Powel-MiniMax

- Powel-MiniMax is a US-based energy software and services provider of stand-alone and integrated energy solutions.
- Powel ASA is spin-off of EFI, the Norwegian Electric Power Research Institute, established in 1951.
- Over 35 software modules used by more than 1000 customers worldwide covering
 - Generation and Water Management
 - Transmission and Distribution Management
 - Trade and Risk Management
 - Customer Management
 - Geographic Information Systems (GIS)
- Over 25 years of water management experience ranging from hydrological analysis and forecasting, water quality modeling, hydro system planning and operational analysis.
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

AGENDA

- The Project
 - Hardware Configuration
 - Data Communication
 - Unit Dispatching Optimization
 - Technical Issues
 - Future Developments
 - Conclusions
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

AGENDA

- The Project
- Hardware Configuration
 - Data Communication
 - Unit Dispatching Optimization
 - Technical Issues
 - Future Developments
 - Conclusions
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

AGENDA

- The Project
- Hardware Configuration
- Data Communication
 - Unit Dispatching Optimization
 - Technical Issues
 - Future Developments
 - Conclusions
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

AGENDA
- The Project
- Hardware Configuration
- Data Communication
- Unit Dispatching Optimization
 - Technical Issues
 - Future Developments
 - Conclusions
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

AGENDA

- The Project
- Hardware Configuration
- Data Communication
- Unit Dispatching Optimization
- Technical Issues
 - Future Developments
 - Conclusions
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

AGENDA

- The Project
- Hardware Configuration
- Data Communication
- Unit Dispatching Optimization
- Technical Issues
- Future Developments
- Conclusions
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

AGENDA

- The Project
- Hardware Configuration
- Data Communication
- Unit Dispatching Optimization
- Technical Issues
- Future Developments
- Conclusions
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

The Project – Overview

- Three hydro plants in a thermal dominated system (hydro provides less than 5% of generation to more than 1 million customers)
 - The hydro plants provide highly valued ancillary services (spinning reserve and up/down regulation)
 - The hydro plants are on AGC to regulate the corporate system
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

The Project – Overview

- Three hydro plants in a thermal dominated system (hydro provides less than 5% of generation to more than 1 million customers)

- The hydro plants provide highly valued ancillary services (spinning reserve and up/down regulation)

- The hydro plants are on AGC to regulate the corporate system
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

The Project – Overview

- Three hydro plants in a thermal dominated system (hydro provides less than 5% of generation to more than 1 million customers)

- The hydro plants provide highly valued ancillary services (spinning reserve and up/down regulation)

- The hydro plants are on AGC to regulate the corporate system
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

The Project – Scope

- Hourly scheduling optimization for the next seven days to maximize either generation or revenue
- Real-time unit dispatch optimization at plant level
- The optimization models are linked with SCADA and AGC for closed-loop control in real-time
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

The Project – Scope

- Hourly scheduling optimization for the next seven days to maximize either generation or revenue

- **Real-time unit dispatch optimization at plant level**

- The optimization models are linked with SCADA and AGC for closed-loop control in real-time
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

The Project – Scope

- Hourly scheduling optimization for the next seven days to maximize either generation or revenue
- Real-time unit dispatch optimization at plant level
- The optimization models are linked with SCADA and AGC for closed-loop control in real-time
Hardware Configuration

EMS

AGC

Real-time Data

MW Setpoint

ISO

Real-time Data

Committed Schedule

MW Setpoint

SCADA

Proposed Schedule

HYDROPS

Start / Stop / MW

Equipment Status

RTU PLC
Current Condition (Plant, Turbine, AGC)

Forecasted Data (Flow, Price)

Data Communication Module

Data Communication

REAL-TIME UNIT DISPATCHING

Current Target Schedule

Optimal Turbine Dispatch

Final Optimal Schedule

SHORT-TERM GENERATION SCHEDULING

Optimal Time Series

Historical Time Series (Observed & Forecasted)
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Unit Dispatching Optimization

- **Objective:** To produce required power output at maximum efficiency (i.e., minimum water usage)
- Constraints: Monitoring environmental constraints (i.e., minimum flow, ramping, etc.)
- Method: Dynamic Programming (modified)
- Inputs: Turbine data and current system conditions
- Running modes: Manual (Local, Remote) and Automatic (AGC & STGS)
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Unit Dispatching Optimization

- **Objective:** To produce required power output at maximum efficiency (i.e., minimum water usage)
- **Constraints:** Monitoring environmental constraints (i.e., minimum flow, ramping, etc.)
- **Method:** Dynamic Programming (modified)
- **Inputs:** Turbine data and current system conditions
- **Running modes:** Manual (Local, Remote) and Automatic (AGC & STGS)
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Unit Dispatching Optimization

- **Objective:** To produce required power output at maximum efficiency (i.e., minimum water usage)
- **Constraints:** Monitoring environmental constraints (i.e., minimum flow, ramping, etc.)
- **Method:** Dynamic Programming (modified)
 - Inputs: Turbine data and current system conditions
 - Running modes: Manual (Local, Remote) and Automatic (AGC & STGS)
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Unit Dispatching Optimization

- **Objective**: To produce required power output at maximum efficiency (i.e., minimum water usage)
- **Constraints**: Monitoring environmental constraints (i.e., minimum flow, ramping, etc.)
- **Method**: Dynamic Programming (modified)
- **Inputs**: Turbine data and current system conditions
 - Running modes: Manual (Local, Remote) and Automatic (AGC & STGS)
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Unit Dispatching Optimization

- **Objective:** To produce required power output at maximum efficiency (i.e., minimum water usage)
- **Constraints:** Monitoring environmental constraints (i.e., minimum flow, ramping, etc.)
- **Method:** Dynamic Programming (modified)
- **Inputs:** Turbine data and current system conditions
- **Running modes:** Manual (Local, Remote) and Automatic (AGC & STGS)
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Technical Issues

- **Running time**: Unit dispatching optimization in less than 4 seconds
- Data communication: Real-time data is updated every second
- Monitoring constraints: min. flow and ramping
- Unit cycling:
 - Minimum on/off time
 - Start/Stop cost
 - Efficiency differential
 - Start/Stop order
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Technical Issues

- **Running time:** Unit dispatching optimization in less than 4 seconds
- **Data communication:** Real-time data is updated every second
- Monitoring constraints: min. flow and ramping
- Unit cycling:
 - Minimum on/off time
 - Start/Stop cost
 - Efficiency differential
 - Start/Stop order
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Technical Issues

- **Running time**: Unit dispatching optimization in less than 4 seconds
- **Data communication**: Real-time data is updated every second
- **Monitoring constraints**: Minimum flow and ramping
 - Unit cycling:
 - Minimum on/off time
 - Start/Stop cost
 - Efficiency differential
 - Start/Stop order
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Technical Issues

- **Running time**: Unit dispatching optimization in less than 4 seconds
- **Data communication**: Real-time data is updated every second
- **Monitoring constraints**: Minimum flow and ramping
- **Unit cycling**:
 - Minimum on/off time
 - Start/Stop cost
 - Efficiency differential
 - Start/Stop order
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Future Development

- **Dissolved Oxygen**: Automatically meet the DO constraint in an optimal way
 - Real-time monitoring
 - DO vs. Vent opening
 - Vent opening vs. Turbine efficiency
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Future Development

- **Dissolved Oxygen**: Automatically meet the DO constraint in an optimal way
 - Real-time monitoring
 - DO vs. Vent opening
 - Vent opening vs. Turbine efficiency
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Future Development

- **Dissolved Oxygen**: Automatically meet the DO constraint in an optimal way
 - Real-time monitoring
 - **DO vs. Vent opening**
 - Vent opening vs. Turbine efficiency
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Future Development

- **Dissolved Oxygen**: Automatically meet the DO constraint in an optimal way
 - Real-time monitoring
 - DO vs. Vent opening
 - Vent opening vs. Turbine efficiency
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Conclusions

- **Fast execution is important in real-time control**
 - Bullet-proof features, backup plans and redundancy are critical elements in closed-loop operations
 - Simple and effective integration of EMS, SCADA, and optimization models is beneficial for maintenance
 - Good compromise between practicality and theoretical optimality
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Conclusions

- Fast execution is important in real-time control
- **Bullet-proof features, backup plans and redundancy are critical elements in closed-loop operations**
- Simple and effective integration of EMS, SCADA, and optimization models is beneficial for maintenance
- Good compromise between practicality and theoretical optimality
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Conclusions

- Fast execution is important in real-time control
- Bullet-proof features, backup plans and redundancy are critical elements in closed-loop operations
- Simple and effective integration of EMS, SCADA, and optimization models is beneficial for maintenance
- Good compromise between practicality and theoretical optimality
Integration of Real-time Unit Dispatching Optimization with SCADA and AGC

Conclusions

- Fast execution is important in real-time control
- Bullet-proof features, backup plans and redundancy are critical elements in closed-loop operations
- Simple and effective integration of EMS, SCADA, and optimization models is beneficial for maintenance
- **Good compromise between practicality and theoretical optimality**